HOMEWORK 4 SOLUTIONS

1. GmC biquad transfer function

$$
H(s) \equiv \frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{s^{2}\left(\frac{C_{X}}{C_{X}+C_{B}}\right)+s\left(\frac{G_{m 5}}{C_{X}+C_{B}}\right)+\left(\frac{G_{m 2} G_{m 4}}{C_{A}\left(C_{X}+C_{B}\right)}\right)}{s^{2}+s\left(\frac{G_{m 3}}{C_{X}+C_{b}}\right)+\left(\frac{G_{m 1} G_{m 2}}{C_{A}\left(C_{X}+C_{B}\right)}\right)}(
$$

We want a lowpass transfer function

$$
H(s)=\frac{k_{0}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}
$$

with $a_{0}=2 \pi \cdot 10 \mathrm{MHz}, Q=1$, and $k_{0} / \omega_{0}^{2}=5$.
Take all capacitances in the circuit to be a reasonable value; for example $C=5 \mathrm{pF}$. We must now find $G_{\text {mil-mt }}$:

$$
\begin{gathered}
0 \\
G_{m 1}=G_{m 2}=\omega_{0} C=0.314 \mathrm{mAVV} \\
G_{m 3}=\omega_{0} C / Q=0.314 \mathrm{mAVV} \\
G_{m+1}=k 0 C / \omega_{0}=5 G_{m 1-m)}=0_{1}, 157 \mathrm{mAVV}
\end{gathered}
$$

We have to choose Gm5 $=0$ and $C x=0$.

$$
\begin{aligned}
& \text { 2. } C_{2} V_{0}(n)=C_{2} V_{0}(n-1)-C_{1} V_{i}(n) \\
& \Rightarrow C_{2} V_{0}(z)=C_{2} z^{-1} V_{0}(z)-C_{1} V_{i}(z) \Rightarrow \frac{V_{0}(z)}{V_{i}(z)}=\frac{-C_{1} / C_{2}}{1-z^{-1}}
\end{aligned}
$$

1.5)
$C_{P_{2}}$ is always discharged since its voltage is virtually ground.
During $\Phi_{1}, c_{p_{1}}$ is charged to $V_{1}(n) C_{P_{1}}$.

This charge will be transferred to C_{2} during ϕ_{2}. Therefore: $C_{2} V_{0}(n)=C_{2} V_{0}(n-1)-C_{p_{1}} V_{1}(n-1)-C_{1}$

$$
\Rightarrow \frac{V_{0}(z)}{V_{1}(z)}=-\frac{\frac{C_{1}}{C_{2}}+\frac{C_{p_{1}}}{C_{2}} z^{-1}}{1-z^{-1}}
$$

